Skip to main content

10 Popular AI Prompt Formats

As the world continues to embrace the potential of artificial intelligence (AI), the quest for effective ways to communicate with these intelligent systems becomes increasingly important. 

Over the last few months, I've encountered numerous discussions surrounding the usefulness of different prompt formats in harnessing the power of AI models. The necessity for clear and adaptable prompt structures has become abundantly clear. 

In this article, I have a quick look at ten popular AI prompt formats, shedding light on their unique features, applications, and giving an example of each.


  1. Keyword-based prompts: Prompting with specific keywords or phrases to guide the model's attention towards relevant information.
    Example: "Generate a summary of recent news articles about [keyword]."


  2. Template-based prompts: Utilizing pre-defined templates to structure the input and guide the model's response generation. Templates can include placeholders for variables or specific content.
    Example: "The weather forecast for [location] tomorrow is [forecast]."


  3. Instruction-based prompts: Providing explicit instructions or guidelines to inform the model about the desired task and output format. Instructions can be provided in natural language or as structured commands.
    Example: "Translate the following text into French."


  4. Question-answering prompts: Presenting the model with a question and expecting it to generate a relevant answer. This format is commonly used in tasks such as question answering, information retrieval, and dialogue systems.
    Example: "What is the capital city of France?"


  5. Completion prompts: Providing the model with a partial sentence or phrase and expecting it to complete the text. This format is often used in tasks such as text generation, language modeling, and creative writing.
    Example: "Complete the sentence: 'In the jungle, the lion roars ______.'"


  6. Classification prompts: Presenting the model with a piece of text and asking it to classify or categorize the content based on predefined labels or categories. This format is common in tasks such as sentiment analysis, topic classification, and document tagging.
    Example: "Classify the following email as spam or not spam."


  7. Summarization prompts: Instructing the model to generate a concise summary of a given text or document. Summarization prompts can vary in complexity, from simple extractive summaries to more sophisticated abstractive summaries.
    Example: "Summarize the plot of the novel 'To Kill a Mockingbird' in three
    sentences."


  8. Translation prompts: Tasking the model with translating text from one language to another. Translation prompts typically include the source text and specify the target language for translation.
    Example: "Translate the following sentence from German to English."


  9. Dialogue prompts: Initiating a conversation with the model by providing an opening statement or question. Dialogue prompts are commonly used in chatbots, virtual assistants, and conversational agents.
    Example: "Start a dialogue with a customer by responding with, 'What product may I help you with today?'"


  10. Conditional prompts: Introducing conditional constraints or contexts to guide the model's behavior. Conditional prompts specify additional information or requirements that the model must consider when generating responses.
    Example: "Generate a story where the protagonist is a detective, and the setting is a futuristic city."


While the AI prompt formats explored in this article provide a foundational understanding of ways of interacting with an LLM, it's essential to recognize their simplicity and brevity. These single-line, basic prompts serve as building blocks for more complex, multi-line prompts, which can offer enhanced context, specificity, and sophistication in guiding AI-generated responses. 
By combining elements from different formats or integrating additional instructions, developers and users can unlock the full potential of AI models to tackle increasingly intricate tasks and address diverse needs. As AI continues to evolve, the flexibility and adaptability of prompt structures will remain critical in harnessing its capabilities to their fullest extent.

Popular posts from this blog

Some ChatGPT Prompts

My inbox has turned into an AI listicle hotspot lately.  It seems that AI tools, in particular ChatGPT, can solve just about any problem you can think of and many that you probably didn't even know existed.   I thought if you can't beat them, you might as well join them, so I've used ChatGPT (of course) to produce some prompts of my own below. I've done most of the hard work by producing the prompts. I'm expecting others to use them to actually solve the problems and apply the the real world solutions. Please do let me know how you get on. The prompts - simply copy and paste them into ChatGPT (other AI systems are available): Prompt: "Generate a Single Line of Code to Decipher Dark Matter's Cryptic Language" Prompt: "Explain Quantum Entanglement in a way that a lay-person would understand" Prompt: "Develop an AI Interpreter in Python for Decoding Alien Communications" Prompt: "Provide a simulation of Black Hole Fusion" Pro...

Fostering Trust, Fairness, and Engagement

We live and work in a world where employee loyalty is increasingly hard to secure, and organisations need to examine a multitude of strategies to retain their top talent. One approach, salary transparency, has emerged as a powerful tool for fostering trust, fairness, and engagement within the workplace. Let's explore how this practice can significantly impact employee retention. Trust is the cornerstone of any strong employer-employee relationship. When it comes to compensation, transparency can play a crucial role in building and maintaining this trust. According to a study by PayScale, 66% of employees at organisations with transparent pay practices expressed trust in company leadership. This trust translates directly into improved retention rates, with transparent organisations experiencing up to 25% lower turnover. Salary transparency goes beyond just disclosing numbers; it is about creating a culture of fairness and equity. When employees understand how their pay is determined...